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NASA TT F-10,742

TRANSMISSION OF CONCENTRATED STRESSES
TO A THIN WALLED SHELL

V. I. Feodos'yev and S. M. Chernyakov

ABSTRACT. The transmission of stresses to a thin-walled
shell over a limited contact region is studied. It is
shown that when the shell is completely free from radial
stresses on the side of the insert, but clamping is retain-
ed, the values of the radial force are decreased by approx-
imately a factor of two.

The force diagrams for many structures include the transmission of 57%
stresses to a thin-walled shell over a limited contact region.

Naturally, in this case it is necessary to take measures to strengthen
the structure. The placement of ribs or longerons is not always possible,
and it is frequently necessary to satisfy the requirements only by local
strengthening of the shell, which makes possible more uniform distribution
of stresses.

The question arises regarding the establishment of an approach to the
design of such joints.

Many investigations have been conducted, the results of which give us a
clear concept of the laws governing the distribution of stresses in the zone
of action of the concentrated load applied to a shell, These investigations
have been principally concerned with the determination of the local stresses
in the region of apertures or rigid inserts into the body of the shell.

However, for plastic materials the fatigue life for the structure under
localized loading was generally not determined. The stressed state is not
the criterion by which one can design such structural joints. Even at
relatively large loads and significant local plastic deformations the structure
does not lose its load-carrying properties and completely satisfies the
requirements.

This work is concerned with the solution of an example from a class of
such problems, obtained in the course of designing a real structure. This
solution shows the recommended approach to the problem and the method of
analysis.

Let us consider a thin walled spherical shell, subjected to stress by a
uniform internal pressure p and radial force P at the center of a circular

*Numbers given in the margin indicate pagination in original foreign text.
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flange (Figure la). The flange (Figure lb) consists of a rigid core with

radius r, and a section r0 <r < rl. The variable thickness of this latter

section promotes more uniform distribution of forces. Both the flange and the
shell are constructed of aluminum-magnesium alloys. The stress diagram for
the alloy is shown in Figure 2.
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The occurrence of plastic deformation in the shell does not produce qualita-
tive changes in the behavior of the system. Therefore, the evaluation of the
stressed state of the shell for design purposes is not as valuable as is
frequently ascribed to this operation. Let us attempt to view this problem
from a different standpoint.

The "force displacement" diagram for the shell had the shape of one of /58
the curves which are shown in Figure 3. Depending on the geometric relation-—
ships the shape of the diagram may change. In some cases the curve (1) has a
maximum, while in others it (2,3) has a monotonic character but at some value
of force the rate of increase of the displacement is rapidly accelerated.

Due to the high plastic properties the shell is not ruptured, and its shape

may vary without the disruption within extremely broad limits. The P-X diagram
is a characteristic of the structure. It describes the behavior of the structure
from the beginning of loading to some limit. The designer who makes use of

such a diagram can decide where he must stop and to what limit a given structure
can be loaded. Such an approach is completely analogous to the design for
permissible stresses. In the latter case, however, the stress is determined

not from the shape of the structural characteristics, but from the test

diagram of the material.



In the proposed approach one may
introduce a reserve coefficient, P,
for which it is necessary to decide a
priori on a certain characteristic
limiting point on the P-A curve. It is
generally convenient to take for such a
point either the maximum point, or a point
, which corresponds to a rapid increase of
Y, ' displacement.

|
/1 Such an approach naturally permits
\ one if necessary, to take into considera-
tion the magnitude of stresses which
occur in the shell in the course of
Figure 3 loading. The problem of constructing
P-A diagrams is naturally more compli-
cated in the case of large displacements and plastic deformations. These
difficulties can be overcome by means of the step method [1]. Here, however,
in contrast to the work described in [1], the independent parameter is the
displacement of a point, at which the applied stress is taken as the independent
parameter rather than the time, t.

1. Let w and u denote the displacements of points of the inner surface
of the shell in a vertical direction downward (along the direction of the force
P) and along the horizontal plane respectively. The angle of rotation of the
normal is denoted through ¢ . At a distance 2z = nh from the inner surface
of the shell we shall have

Ry ' h
€1y = el-;_*_ 71117_‘1 _Ft- , 89, = &2 + 'I"lh%z -7:— (l. l)

where el and 52 are deformations in the inner surface} hx 1 and hx 2

are dimensionless changes of curvature; h is the thickness of the shell and
ht is the variable thickness of the flange, for which the equation describing

changes is taken to be linear (Figure 1b).

6,—0
hy =h + (ho— k) 01—90 (1.2)

From the geometric relationship it follows that

hoU '
el=—IhT[U'cos(6+ﬁ)+IV’sin(9+ﬁ)] +cos o —1, ezz—'ﬁ Y (1.3)
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; W’ cos 6 — U sin 0]
\ tan O = 7 eos 6 - W sin 0
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The intensity of the deformed state € in points, located at a distance /59

z from the inner surface shall be

&= ‘/;5 Vslz2 + 81280, - €7 (1.4)

Let us assume for the elastic zone, just as for the plastic zone, that
u = 0.5, and let us approximate the stretching —- compression diagram by the
following relationship:

G.
=g (0<¢e<¢E) —Lff:_— A+ BYC + De; (&, >¢,) (1.5)

S

where A, B, C and D are dimensionless constants, selected from the shape of
the diagram (along the coordinates of points A and T in Figure 2).

Subsequently we shall not take into account the possibility of the
occurrence of the relief zones, i.e., the material is viewed as nonlinearly
elastic.

2. Let
W =AW, + 4,W,+ AW, + W, (2.1)
U= (A)+By)Uy+BU, + BUs + BUs + U,
Here WO, Wz, oo} UO’ Ul ... are some specially selected functionsof the
angle 0, and AO’ A2, oo BO’ Bl ... are parameters which vary in the course

of change of the load.
of the parameters

From the second and the last expressions in equation (1.3),independenﬁ("
AO, A2, cee} BO’ Bl’ «++y We have

U=0, W cos0y,— U'sinf,=20 (when 9 = ) (2.2)

At sufficiently large angle 6 functions W and U must assume the form
which is characteristic of the momentless state of the shell, loaded by a force
at the pole and by the internal pressure.

The construction of a system of functions WO, W2, e UO, Ul’ ..+, which
would satisfy these conditions, presents some difficulties.

Experience shows that the shape of the indentation changes significantly
with increase of sag and penetration of the plastic deformation region. It



remains, however, axially symmetrical. In choosing functions it is necessary
to take into account the parameters of the "feather", i.e., the transition
section with variable thickness of the wall ht‘ It is the dimensions of this

very section which determine how effective the joint is and how smoothly the
stresses are redistributed.

The principal functions in the expression (2.1) are WO and UO. They

are determined by a linear solution of the loading force P without the
pressure p for the shell.

The determination of these functions with modern computer technology
does not present any great difficulties. For the axially symmetrical shell
with variable wall thickness Meisner equations are integrated numerically.

The integration is carried from 6 = 8 to some randomly taken value

0
8 = ek, where the shape of the indentation, on the basis of continuity

conditions, merges with the momentless state zone. With two boundary

conditions at 6 = 60 the solution is reduced to the successive process

of search for two other parameters, the magnitude of which would insure the
adherence to the assigned conditions when 6 = ek. It is desirable to take
the angle ek as small as possible, in order to shorten the calculation time.
At the same time it must be sufficiently large in order to permit joining of

the two parts of the shell when 6 = ek on the basis of simplified equations

of the edge effect. The choice of Gk is conducted on the basis of an

approximate evaluation of the rate of attenuation of the moment state for the
assigned value of h/R. If the increase of ek does not lead to change of
functions WO and UO then the angle ek was taken sufficiently large. If

functions WO and U0 change significantly then the angle Gk should be en-

larged. This operation may be directly programmed into a computer, but it is
not mandatory. When the approximation has been made and the shape of the

elastic surface has been found, the functions WO and U0 and their derivatives

are normalized., Their scales are at the same time changed in order for WO to

be equal to unity at 6 = 0 Therefore, the magnitude of force P, entering

0
the Meisner equation in the course of construction of these functions could
be taken randomly.

Using the same subprogram the second integration of the Meisner equation
is conducted, but in this case at P = 0 and some value of p, which is
introduced into the calculation in a dimensionless form. Thus, functions Wp

and Up are found. The determined functions WO, UO’ Wp and Up, as well as

their first and second derivatives are introduced into the operational memory
of the computer. For this purpose a number of points are taken within the



limits of indentation, i.e., within the limits of angle ek - 60, for each

of which functions and derivatives are written. In our calculations 64 such
points were taken.

The forms of functions WO’ UO’ WP and Up are shown in Figure 4,

As an illustration we give some values of these functions for different
values of angle ¢ for the shell with a rigid flange (without a feathered
edge) and parameters R = 280 mm, h = 1.3 mm, 6, = 4°30' when p = 0 (W,, U.)

_ 2 . 0 0 0
and p = 3.3 kg/cm (Wp’ Up).

c = a

& = 4°30~ 7°15° 10° 12°45~ 18°15~ 29°15~ 45°45°

‘ WO = 1.0 0.5576 0.1388 0.0060 0.0062 0.0080 0.0007
0= 0 0.0259 0.0662 0.0743 0.0507 0.0304 0.0207 j
D = — 0.0322 0.0416 — 0.0505 =— 0.0528 — 0.0518 — 0.0469 — 0.0374 !

p =0 0.0047 0.0089 0.0121 0.0170 0.0264 0.0387

U, and U_. in the expression (2.1) were

The auxiliary functions Wz, W4, Ul’ 3 5

taken in the form
W, =U,= (6—8,)" ™.
The quantity k was not varied

although it shall be shown later, that
this could have been done.

As the first approximation we
take

k= YRR YIT—0

Subsequently satisfactory agree-
ment of calculations was found with the
preliminary experiments; therefore the
previously taken value for k was re-
tained.

Let us now consider the expressions
for W and U (2.1) as a whole.

Figure 4

Since WO = 1 and W2 = W4 = 0 ywhen

6 = the parameter A, provides the

%> 0

displacement A = th under the in-



fluence of the pressure P for the shell, pressurized beforehand with
pressure p. All of the functions UO’ Ul’ ... become zero when 8 = 60.

Consequently, the condition U = 0 on the inner surface is fulfilled at any
values of parameters AO, BO, Bl’ vee

The condition (2.2) is fulfilled if

B, = —B, (Uq)o=00) (2.3)
Thus, parameters BO and Bl are interrelated.
3. The expression for the total potential energy of the system has the

following form:

9= 5 (Sicidai)dQ +pV;Pth (96=§n—ggﬁ) (3.1)
a o

Here Q 4is the volume of the deformed section of the shell, V is the /61
volume of the inner region of the vessel andnajo is the energy in a dimension-

less form. The expression (3.1) is transformed finally to the form

9 = 9 (4;, Ay Ay, By, By, B;, p, P) (3.2)
The parameter B1 is not included into this expression, since it is related
to B, by the equation (2.3). In the equilibrium position

0
89 =0 (3.3)

The equality (3.3) is fulfilled with simultaneous conversion of partial
derivatives to zero

03 N ; o
a<>n=§°*a( 9@+ p 50y, —P50n

which after transformation may be written in the dimensionless form

1, = 1
2 2]

_99% _ ' | o _ 0% 94, ov
Fn=500n= ;_5 () Sn0Idd — 5 Py 55—+ Sr FTQR
(n=20,1,...9) (34) (3.4)
. _P _ pR
Po= wormn Po= g

The notation 3/3( )n designates differentiations with respect to one of the

variable parameters. Let

N 99 09 o . EE) Ry,
1‘1_‘ 2 = -2 = -0 7y = = =2 —%
‘ Fy ad, "’ Iy EP £ 8B, Py N Fo = FYIN



During the integration of the energy of the shell it is split into two
parts: 90 < 6 g ek and 0k < 0 < 1/2n. In the first section the state has

moments while in the second case it is momentless. All of the deformation
processes of the shell during the change of the pressure p are developed
primarily within the limits of the localized indentation zone, and taking
into account the energy component of the second section, as was shown in a
number of calculations, this has practically no effect on the final results.

Let us consider separately the expression F0 = ﬁiﬂO/BAO.

From (3.4) we have

Vo U

LI Gi 68 _ P ‘If av
Po=-3 5 > A, S 0dndd + 57 - 5 (3.5)

When n # 0 the coefficient at P0 (3.4) turns to zero. Therefore the
pressure, PO’ does not enter into the remaining equation (3.4) in the

explicit form.

Finally we have a system of five nonlinear equations

Fo(Ag Ay oo, By, By ..) =0 (n=12.,5) (3.6)

the solution of which is practically unrealizable as a result of the immensity
of the intermediate relationships and multiple solutions.

In order to avoid the multiple solutions it is necessary to take into
account the history of stressing, first the shell is pressurized, and then

the center ) = th is slowly displaced.

The parameter AO can be viewed as the "calendar" parameter for a given
history and the calculation is conducted in steps.

4. Let us construct an algorithm for the step method. We shall rewrite
the system of equations (3.6) in the following form: 62

a;, Ady + a04, + a3 ABy - ay ABg + a,,ABy = — a;00A,
ay A4y + ayAA, 4 ay OB, + a3 AB; + ay,AB; = ——azoAAo

................................

aolAA?. + arnAfl _I" (153AB + (104AB3 + (I_,;,AB;, = - aaOAAO (4. 1)
ar or ar ar
Any = 7‘_‘{%' ’ Ay = 0‘1;1 Any == Ub;’:) ) Apg = 01;; ?
i Al Lok
| R L, = " =12 5
\ Ty oty Apo ad, (n 1,2,...,5)



Subsequently, we go stepwise, setting all parameters AO’ AZ’ ceey BO’ .o
prior to the first step equal to zero.

The sequence of operations is reduced to the calculation of quantities €15
€55 hJ(l, hox 5» tan Jd, €12° €25 and ey ci/E according to equations (1.1) -
(1.5) and knowing AO’ A2, ... from the previous step. For this the values of
functions Un’ Wn and their derivatives are used, recorded in the operative

memory of the computer. From the same functions the volume of the inner region
V bounded by the deformed cell is determined.
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Figure 5 Figure 6
Since during flexure of the shell the stress over the thickness changes,
the calculations of €120 €950 € and oi/E must be conducted for a number of
points, located along the normal. In the considered example, the thickness

was broken up into ten sections. Consequently, 11 points were obtained.

The main characteristic of the program is the cyclic nature of its
construction, which is necessary for the determination of partial derivatives.
Each of the varied parameters is in turn increased by a quantity &,

In order to find the quantity Fn’ we calculate €y for parameters AO’ A2,
ey BO’ ++, of the previous step. Following this, for example, the quantity

A with all other parameters being the same is increased by &, and calculations
are repeated. The difference thus found between the quantity €5 divided by

§, gives aei/aAh. By carrying out the integration over the thickness and

over the angle 9 we find Fn (3.4).



For the determination of the coefficients in the system (4.1) it is /63
necessary to have derivatives of Fn’ which are obtained by the same method.

Therefore, the program for the determination of the coefficient in the system
(4.1) is constructed by the "cycle in the cycle'" principle, as a result of which
a matrix aij is obtained.

By assigning the step AA, - AA/h, we solve the system (4.1) and find the

0

increases AAZ, AA4, ABO,..., which are added to the previous values of AZ’
A4, BO’ ...y after which we proceed with the next step. The parameter of the

pressure P is determined for each step from the expression (3.5). Thus, in

0

the dimensionless form a diagram P, = f(AO) is constructed, Having such a

0
diagram one may solve the questions regarding the suitability of the proposed
structure.

Many calculations have shown that the limiting state, corresponding to
the maximum pressure P, 1is achieved when the indentation A is of the order
of 1 - 2 thicknesses of the shell, i.e. when A0 *1- 2. The step AAO,

which insures more than sufficient technical accuracy, may be taken of the
orxder of 0.05 - 0.1. Therefore, the computer time which is necessary for the
construction of one diagram, is relatively small (of the order of 20 - 30
minutes). Thus, in a few hours of work one can observe the effect of the

principal structural parameters: angle 60, angle el and the thickness of the

feathered edge of the rib. The effect of the dimensions of the taper of the
rib on the shape of the diagram is quite significant.

Figure 5 shows a comparison of the calculated curves (solid lines) with
the experimental curves (broken lines) for shells with circular flange with-
out the taper for the case when p = 0. Each pair of curves refers to one of
the shells with the following values of parameters h and 60 (radius R = 280

mn is the same for all shells): 1 (2.6 mm, 10°54'), 2 (2 mm, 7° 10'),
3 (1.3 mm, 4°30'), 4 (1.7 mm, 1°50'). The existing discrepancies are relative-
ly small and quite permissible from the practical standpoint.

The carrying capacity of shells can be conveniently classified by means
of the parameter ho 0/R. For the above considered shells 1,2,3 ,and 4 with

parameter h620/R= 3.4 - 10-4,1.2 . 10_4, 0.28 10—4, 0.062 - 10-4. Figure 4 shows

the limiting loads as a function of pressure and the dimensions of the shell.

Figure 7 for the shell with parameter ho? /R =0.28 * 10™* shows the effect

0
of the dimensions of the flange with the taper on the quantity P*O when Py = 0.

The principal error which arises in the calculations of such structure is
associated with deviations of the conditions along the inner periphery from the
assumed rigid joint. The welded seam and the insert itself have a certain
pliancy. This leads to partial weakening of the applied bond in the most strongly

10



strongly deformed zone of the shell and has a significant effect on the P = f(})).

The conducted calculations have

2t shown that in the limiting case when
d - the shell is completely free from radial
%" | stresses on the side of the insert, but
; when clamping is preserved. the values
20 I//:> of corrected P are lowered by approxi-

mately a factor of two.

J\\>//” The effect of the magnitude of
s the Poisson coefficient was determined.
////, The change from the value u = 0.5 to
//// u = 0.3 did not have any significant
10 74 effect on the shape of the P = f£(})
//// 2N diagram.
g
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